An object that can be viewed as a Seekable object. For example a FileChannel.
1.0
o != arg0 is the same as !(o == (arg0)).
o != arg0 is the same as !(o == (arg0)).
the object to compare against this object for dis-equality.
false if the receiver object is equivalent to the argument; true otherwise.
o == arg0 is the same as if (o eq null) arg0 eq null else o.equals(arg0).
o == arg0 is the same as if (o eq null) arg0 eq null else o.equals(arg0).
the object to compare against this object for equality.
true if the receiver object is equivalent to the argument; false otherwise.
o == arg0 is the same as o.equals(arg0).
o == arg0 is the same as o.equals(arg0).
the object to compare against this object for equality.
true if the receiver object is equivalent to the argument; false otherwise.
Append a string to the end of the Seekable object.
Append a string to the end of the Seekable object.
the data to write
the codec of the string to be written. The string will
be converted to the encoding of codec
Append bytes to the end of a file
Append bytes to the end of a file
Important: The use of an Array is highly recommended because normally arrays can be more efficiently written using the underlying APIs
The data to write. This can be any type that has a OutputConverter associated with it. There are predefined $outputConverters for several types. See the OutputConverter object for the predefined types and for objects to simplify implementing custom OutputConverter
$converterParam
Creates a CloseAction from the function and passes it to appendCloseAction(CloseAction)
Creates a CloseAction from the function and passes it to appendCloseAction(CloseAction)
The new action to append
a new instance with the added CloseAction *
Add a CloseAction to the end of the CloseAction queue (the last action executed).
Add a CloseAction to the end of the CloseAction queue (the last action executed).
The new action to append
a new instance with the added CloseAction
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes.
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes. In other words just taking the first byte. This is pretty common in Java.io style IO. IE
outputStream.write(1)
1 is written as a single byte.
Append several strings to the end of the Seekable object.
Append several strings to the end of the Seekable object.
The strings to write
A string to add between each string. It is not added to the before the first string or after the last.
The codec of the strings to be written. The strings will
be converted to the encoding of codec
This method is used to cast the receiver object to be of type T0.
This method is used to cast the receiver object to be of type T0.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression
1.asInstanceOf[String] will throw a ClassCastException at runtime, while the expression
List(1).asInstanceOf[List[String]] will not. In the latter example, because the type argument is erased as
part of compilation it is not possible to check whether the contents of the list are of the requested typed.
the receiver object.
This method aspires to be the fastest way to read a stream of known length into memory.
This method aspires to be the fastest way to read a stream of known length into memory.
Obtains a Traversable for conveniently processing the resource as bytes.
Obtains a Traversable for conveniently processing the resource as bytes.
an non-strict traversable over all the bytes
Obtains a Traversable for conveniently processing the file as Ints.
The underlying channel to write to.
The underlying channel to write to. The open options indicate the preferred way to interact with the underlying channel.
The characters in the object.
The characters in the object.$
If the codec is not the same as the source codec (the codec of the underlying data) then the characters will converted to the desired codec.
The codec representing the desired encoding of the characters @return an traversable of all the characters
This method creates and returns a copy of the receiver object.
This method creates and returns a copy of the receiver object.
The default implementation of the clone method is platform dependent.
a copy of the receiver object.
Copy all data from this Input object to the Output object as efficiently as possible.
Copy all data from this Input object to the Output object as efficiently as possible.
output sink to copy the data to
This method is used to test whether the argument (arg0) is a reference to the
receiver object (this).
This method is used to test whether the argument (arg0) is a reference to the
receiver object (this).
The eq method implements an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence relation] on
non-null instances of AnyRef:
* It is reflexive: for any non-null instance x of type AnyRef, x.eq(x) returns true.
* It is symmetric: for any non-null instances x and y of type AnyRef, x.eq(y) returns true if and
only if y.eq(x) returns true.
* It is transitive: for any non-null instances x, y, and z of type AnyRef if x.eq(y) returns true
and y.eq(z) returns true, then x.eq(z) returns true.
Additionally, the eq method has three other properties.
* It is consistent: for any non-null instances x and y of type AnyRef, multiple invocations of
x.eq(y) consistently returns true or consistently returns false.
* For any non-null instance x of type AnyRef, x.eq(null) and null.eq(x) returns false.
* null.eq(null) returns true.
When overriding the equals or hashCode methods, it is important to ensure that their behavior is
consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2), they
should be equal to each other (o1 == o2) and they should hash to the same value (o1.hashCode == o2.hashCode).
the object to compare against this object for reference equality.
true if the argument is a reference to the receiver object; false otherwise.
This method is used to compare the receiver object (this) with the argument object (arg0) for equivalence.
This method is used to compare the receiver object (this) with the argument object (arg0) for equivalence.
The default implementations of this method is an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence
relation]:
* It is reflexive: for any instance x of type Any, x.equals(x) should return true.
* It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and
only if y.equals(x) returns true.
* It is transitive: for any instances x, y, and z of type AnyRef if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
If you override this method, you should verify that your implementation remains an equivalence relation.
Additionally, when overriding this method it is often necessary to override hashCode to ensure that objects
that are "equal" (o1.equals(o2) returns true) hash to the same scala.Int
(o1.hashCode.equals(o2.hashCode)).
the object to compare against this object for equality.
true if the receiver object is equivalent to the argument; false otherwise.
This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.
This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.
The details of when and if the finalize method are invoked, as well as the interaction between finalize
and non-local returns and exceptions, are all platform dependent.
Returns a representation that corresponds to the dynamic class of the receiver object.
Returns a representation that corresponds to the dynamic class of the receiver object.
The nature of the representation is platform dependent.
a representation that corresponds to the dynamic class of the receiver object.
Returns a hash code value for the object.
Returns a hash code value for the object.
The default hashing algorithm is platform dependent.
Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)) yet
not be equal (o1.equals(o2) returns false). A degenerate implementation could always return 0.
However, it is required that if two objects are equal (o1.equals(o2) returns true) that they have
identical hash codes (o1.hashCode.equals(o2.hashCode)). Therefore, when overriding this method, be sure
to verify that the behavior is consistent with the equals method.
the hash code value for the object.
Obtain the InputStreamResource(typically) version of this object.
Obtain the InputStreamResource(typically) version of this object.
the InputStreamResource(typically) version of this object.
Inserts data at a position in the Seekable.
Inserts data at a position in the Seekable. The actual position in the Seekable where the data is inserted depends on the type of data being written. For example if Longs are being written then position calculated as position * 8
Important: The use of an Array is highly recommended because normally arrays can be more efficiently written using the underlying APIs
The position where the data is inserted into the Seekable. The actual position in the Seekable where the data is inserted depends on the type of data being written. For example if Longs are being written then position calculated as position * 8
The data to write. This can be any type that has a OutputConverter associated with it. There are predefined $outputConverters for several types. See the OutputConverter object for the predefined types and for objects to simplify implementing custom OutputConverter
$converterParam
Inserts a string at a position in the Seekable.
Inserts a string at a position in the Seekable. This is a potentially inefficient because of the need to count characters. If the codec is not a fixed sized codec (for example UTF8) each character must be converted in the file up to the point of insertion.
The position in the file to perform the insert. A position of 2 will insert the character after the second character (not byte).
The string that will be inserted into the Seekable
The codec to use for determining the location for inserting the string and for encoding the string as bytes
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes.
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes. In other words just taking the first byte. This is pretty common in Java.io style IO. IE
outputStream.write(1)
1 is written as a single byte.
This method is used to test whether the dynamic type of the receiver object is T0.
This method is used to test whether the dynamic type of the receiver object is T0.
Note that the test result of the test is modulo Scala's erasure semantics. Therefore the expression
1.isInstanceOf[String] will return false, while the expression List(1).isInstanceOf[List[String]] will
return true. In the latter example, because the type argument is erased as part of compilation it is not
possible to check whether the contents of the list are of the requested typed.
true if the receiver object is an instance of erasure of type T0; false otherwise.
Obtain an non-strict traversable for iterating through the lines in the object
Obtain an non-strict traversable for iterating through the lines in the object
If the codec is not the same as the source codec (the codec of the underlying data) then the characters will converted to the desired codec.
The strategy for determining the end of line Default is to auto-detect the EOL
if true then the line will end with the line terminator Default is false
@return a non-strict traversable for iterating through all the lines
The codec representing the desired encoding of the characters
o.ne(arg0) is the same as !(o.eq(arg0)).
o.ne(arg0) is the same as !(o.eq(arg0)).
the object to compare against this object for reference dis-equality.
false if the argument is not a reference to the receiver object; true otherwise.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Creates a new instance of the underlying resource (or opens it).
Creates a new instance of the underlying resource (or opens it). Sometimes the code block used to create the Resource is non-reusable in which case this Resource can only be used once. This is not recommended. When creating a resource it is recommended to pass the code block for creating the resource to the resource so that the resource can be reused. Of course this is not always possible
This method should only be used with care in cases when Automatic
Resource Management cannot be used because the
InputStream must be closed manually.
This is public only to permit interoperability with certain Java APIs. A better pattern of use should be:
resource.acquireFor {
// call java API
}
or
val calculatedResult = resource.acquireAndGet {
// cal java API that returns a result
}
the actual resource that has been openned
Obtain the OutputStreamResource(typically) version of this object.
Obtain the OutputStreamResource(typically) version of this object.
the OutputStreamResource(typically) version of this object.
Update a portion of the file content at the declared location.
Update a portion of the file content at the declared location. This is the most flexible of the random access methods but is also (probably) the trickiest to fully understand. That said it behaves (almost) identical to a scala.collection.Seq.patch method, so if you understand that you should not have difficulty understanding this method.
Important: The use of an Array is highly recommended because normally arrays can be more efficiently written using the underlying APIs
To append data the position must >= size
If the position is within the file but the
position + bytes.length
is beyond the end of the file the file will be enlarged so
that the entire string can fit in the file
The write begins at the position indicated. So if position = 0 then the write will begin at the first byte of the file.
The start position of the update starting at 0. The position must be within the file or == size (for appending)
The data to write. This can be any type that has a OutputConverter associated with it. There are predefined $outputConverters for several types. See the OutputConverter object for the predefined types and for objects to simplify implementing custom OutputConverter
The strategy that dictates how many characters/bytes/units are overwritten $converterParam
Update a portion of the file content at the declared location.
Update a portion of the file content at the declared location. This is the most flexible of the random access methods but is also (probably) the trickiest to fully understand. That said it behaves (almost) identical to a scala.collection.Seq.patch method, so if you understand that you should not have difficulty understanding this method.
If the position is beyond the end of the file a BufferUnderflow Exception will be thrown
If the position is within the file but the
position + string.getBytes(codec).length
is beyond the end of the file the file will be enlarged so
that the entire string can fit in the file
The write begins at the position indicated. So if position = 0 then the write will begin at the first byte of the file.
The start position of the update starting at 0. The position is the position'th character in the file using the codec for decoding the file The position must be within the file.
The string to write to the file starting at position.
The strategy that dictates how many characters/bytes/units are overwritten
The codec to use for decoding the underlying data into characters
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes.
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes. In other words just taking the first byte. This is pretty common in Java.io style IO. IE
outputStream.write(1)
1 is written as a single byte.
Creates a CloseAction from the function and passes it to prependCloseAction(CloseAction)
Creates a CloseAction from the function and passes it to prependCloseAction(CloseAction)
The new action to prepend
a new instance with the added CloseAction *
Add a CloseAction to the front of the CloseAction queue.
Add a CloseAction to the front of the CloseAction queue.
The new action to prepend
a new instance with the added CloseAction
Obtain the ReadableByteChannelResource(typically) version of this object.
Obtain the ReadableByteChannelResource(typically) version of this object.
the ReadableByteChannelResource(typically) version of this object.
Obtain the ReadCharsResource version of this object.
Obtain the ReadCharsResource version of this object.
the ReadCharsResource version of this object.
The number of bytes that can be read from the underlying resource.
The number of bytes that can be read from the underlying resource.
if length == None then it is not possible to determine the number of bytes in advance.
Loads all the characters into memory.
Loads all the characters into memory. There is no protection against loading very large files/amounts of data.
If the codec is not the same as the source codec (the codec of the underlying data) then the characters will converted to the desired codec.
The codec representing the desired encoding of the characters
Create a temporary file to use for performing certain operations.
Create a temporary file to use for performing certain operations. It should be as efficient as possible to copy from the temporary file to this Seekable and vice-versa. Can be overridden for performance
Returns a string representation of the object.
Returns a string representation of the object.
The default representation is platform dependent.
a string representation of the object.
Truncate/Chop the Seekable to the number of bytes declared by the position param
Truncate/Chop the Seekable to the number of bytes declared by the position param
Truncate/Chop the Seekable to the number of bytes declared by the position param.
Truncate/Chop the Seekable to the number of bytes declared by the position param. In this method each position is one character instead of bytes.
Obtain the scalax.io.WritableByteChannel(typically) version of this object.
Obtain the scalax.io.WritableByteChannel(typically) version of this object.
the scalax.io.WritableByteChannel(typically) version of this object.
Writes a string.
Writes a string.
the data to write
the codec of the string to be written. The string will
be converted to the encoding of sourceCodec
Default is sourceCodec
Write data to the underlying object.
Write data to the underlying object. In the case of writing ints and bytes it is often recommended to write arrays of data since normally the underlying object can write arrays of bytes or integers most efficiently.
Since Characters require a codec to write to an OutputStream characters cannot be written with this method unless a OutputWriterFunction.CharFunction object is provided as the writer.
The data to write to underlying object. Any data that has a resolvable OutputConverter can be written. See the OutputConverter object for the defined OutputConverter implementations and classes to assist implementing more.
The strategy used to write the data to the underlying object. Many standard data-types are implicitly resolved and do not need to be supplied
#writeChars for more on writing characters
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes.
Since the OutputConverter object defined for writing Ints encodes Ints using 4 bytes this method is provided to simply write an array of Ints as if they are Bytes. In other words just taking the first byte. This is pretty common in Java.io style IO. IE
outputStream.write(1)
1 is written as a single byte.
Write several strings.
Write several strings.
The data to write
A string to add between each string. It is not added to the before the first string or after the last.
The codec of the strings to be written. The strings will
be converted to the encoding of sourceCodec
Obtain the WriteCharsResource version of this object.
Obtain the WriteCharsResource version of this object.
the WriteCharsResource version of this object.
An object that can be viewed as a Seekable object. For example a FileChannel.